82 research outputs found

    Silicon-Based Solid-State Batteries: Electrochemistry and Mechanics to Guide Design and Operation

    Get PDF
    Solid-state batteries (SSBs) are promising alternatives to the incumbent lithium-ion technology; however, they face a unique set of challenges that must be overcome to enable their widespread adoption. These challenges include solid-solid interfaces that are highly resistive, with slow kinetics, and a tendency to form interfacial voids causing diminished cycle life due to fracture and delamination. This modeling study probes the evolution of stresses at the solid electrolyte (SE) solid-solid interfaces, by linking the chemical and mechanical material properties to their electrochemical response, which can be used as a guide to optimize the design and manufacture of silicon (Si) based SSBs. A thin-film solid-state battery consisting of an amorphous Si negative electrode (NE) is studied, which exerts compressive stress on the SE, caused by the lithiation-induced expansion of the Si. By using a 2D chemo-mechanical model, continuum scale simulations are used to probe the effect of applied pressure and C-rate on the stress-strain response of the cell and their impacts on the overall cell capacity. A complex concentration gradient is generated within the Si electrode due to slow diffusion of Li through Si, which leads to localized strains. To reduce the interfacial stress and strain at 100% SOC, operation at moderate C-rates with low applied pressure is desirable. Alternatively, the mechanical properties of the SE could be tailored to optimize cell performance. To reduce Si stress, a SE with a moderate Young's modulus similar to that of lithium phosphorous oxynitride (∼77 GPa) with a low yield strength comparable to sulfides (∼0.67 GPa) should be selected. However, if the reduction in SE stress is of greater concern, then a compliant Young's modulus (∼29 GPa) with a moderate yield strength (1-3 GPa) should be targeted. This study emphasizes the need for SE material selection and the consideration of other cell components in order to optimize the performance of thin film solid-state batteries

    Lithium-sulfur battery diagnostics through distribution of relaxation times analysis

    Get PDF
    Electrochemical impedance spectroscopy (EIS) is widely used in battery analysis as it is simple to implement and non-destructive. However, the data provided is a global representation of all electrochemical processes within the cell and much useful information is ambiguous or inaccessible when using traditional analysis techniques. This is a major challenge when EIS is used to analyse systems with complex cell chemistries, like lithium-sulfur (Li-S), one of the strongest candidates to supersede conventional Li-ion batteries. Here we demonstrate the application of distribution of relaxation times (DRT) analysis for quantitative deconvolution of EIS spectra from Li-S batteries, revealing the contributions of (eight) distinct electrode processes to the total cell polarisation. The DRT profile is shown to be strongly dependent on cell state-of-charge, offering a route to automated and on-board analysis of Li-S cells

    Towards Optimised Cell Design of Thin Film Silicon-Based Solid-State Batteries via Modelling and Experimental Characterisation

    Get PDF
    To realise the promise of solid-state batteries, negative electrode materials exhibiting large volumetric expansions, such as Li and Si, must be used. These volume changes can cause significant mechanical stresses and strains that affect cell performance and durability, however their role and nature in SSBs are poorly understood. Here, a 2D electro-chemo-mechanical model is constructed and experimentally validated using steady-state, transient and pulsed electrochemical methods. The model geometry is taken as a representative cross-section of a non-porous, thin-film solid-state battery with an amorphous Si (a-Si) negative electrode, lithium phosphorous oxynitride (LiPON) solid electrolyte and LiCoO2 (LCO) positive electrode. A viscoplastic model is used to predict the build-up of strains and plastic deformation of a-Si as a result of (de)lithiation during cycling. A suite of electrochemical tests, including electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique and hybrid pulse power characterisation are carried out to establish key parameters for model validation. The validated model is used to explore the peak interfacial (a-Si∣LiPON) stress and strain as a function of the relative electrode thickness (up to a factor of 4), revealing a peak volumetric expansion from 69% to 104% during cycling at 1C. The validation of this electro-chemo-mechanical model under load and pulsed operating conditions will aid in the cell design and optimisation of solid-state battery technologies

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13 TeV collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV.Nosignificant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of ˜χ+1 ˜χ−1 pair production and of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the ˜ τL state is set to be halfway between the masses of the ˜χ±1 and the ˜χ01. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of ˜χ+1 ˜χ−1 for a massless ˜χ01. Common ˜χ±1 and ˜χ02 masses up to 760 GeV are excluded in the case of production of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 assuming a massless ˜χ01. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the ˜χ±1 and the ˜χ01 are also studied by varying the ˜ τL mass between the masses of the ˜χ±1 and the ˜χ01

    Measurement of differential cross sections and W + /W − cross-section ratios for W boson production in association with jets at √s =8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the W boson production cross section and the W + /W − cross-section ratio, both in association with jets, in proton--proton collisions at s √ =8 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb −1 . Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the W boson. For a subset of the observables, the differential cross sections of positively and negatively charged W bosons are measured separately. In the cross-section ratio of W + /W − the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proto

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Study of ordered hadron chains with the ATLAS detector

    Get PDF
    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μb−1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √s=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC

    Search for supersymmetry in events with four or more leptons in √s =13 TeV pp collisions with ATLAS

    Get PDF
    Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb −1 of proton-proton collisions delivered by the Large Hadron Collider at s √ =13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of General Gauge Mediated supersymmetry, where higgsino masses are excluded up to 295 GeV. In R -parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46 TeV, 1.06 TeV, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively

    Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

    Get PDF
    Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos
    corecore